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Abstract. Using the Poisson current algebra of the supersymmetric principal chiral model, we develop the
algebraic canonical structure of the model by evaluating the fundamental Poisson bracket of the Lax ma-
trices that fits into the r–s matrix formalism of non-ultralocal integrable models. The fundamental Poisson
bracket has been used to compute the Poisson bracket algebra of the monodromy matrix that gives the
conserved quantities in involution.
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1 Introduction

In some recent investigations [1, 2], the classical integrabil-
ity of the supersymmetric principal chiral model (SPCM)
has been studied. It has been shown in [2] that for the
SPCM there exist two families of local conserved quanti-
ties in involution, each with finitely many members whose
spins are exactly the exponents of the underlying Lie al-
gebra of the model, with no repetition modulo the Cox-
eter number. Along with the existence of local conserved
quantities in the SPCM, there exist non-local conserved
quantities as well [1–7]. Furthermore, it has been shown
in [1] that the SPCM also admits a one-parameter trans-
formation family on superfields leading to a superfield Lax
formalism and a zero-curvature representation. The super-
field Lax formalism is shown to be related to the super
Backlund transformation and the super Riccati equations
of the SPCM.
In integrable field theories some integrable canonical

structures are associated with the Lax pair. The Lax pair
in general is a pair of matrices that are functions of fields
and a spectral parameter. The matrices obey a Poisson
bracket algebra which in many cases is ultralocal, i.e. the
algebra does not contain the derivatives of the delta func-
tion. Such models are referred to as ultralocal models. The
ultralocality leads to a Poisson bracket algebra of the mon-
odromy matrix and the Jacobi identity gives the classical
Yang–Baxter equation for an r matrix [11–23]. In fact, the
Yang–Baxter equation leads to the existence of commut-
ing conserved quantities, ensuring the integrability of the
model [11–23].
The r matrix method has also been employed to non-

ultralocal models i.e. the models for which the algebra
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of Lax matrices contains derivatives of the delta func-
tion [11–23]. Some examples of such integrable models
are the principal chiral model (PCM), the complex sine-
Gordon theory (CSG), the Wess–Zumino–Witten model
(WZW), the O(N) sigma model, etc. The r–s matrix ap-
proach has been adopted to study such non-ultralocal
models in which the rmatrices are no longer anti-symmetric
and may also depend on dynamical variables giving an ex-
tended dynamical Yang–Baxter equation [17].
The purpose of this paper is to study the integrabil-

ity of the supersymmetric principal chiral model (SPCM)
as a non-ultralocal model, using the r–s matrix approach
of the Poisson bracket algebra of monodromy matrix. We
demonstrate that the SPCM, which is known to be in-
tegrable, provides an explicit realization of the r–s ma-
trix formalism developed for bosonic integrable models by
Maillet [20, 21]. Starting with a Lax formalism, we develop
a canonical r–s matrix approach for the SPCM and obtain
the Poisson bracket algebra of the monodromy matrix in
terms of the r–s matrices for which the consistency con-
dition implies an extended non-dynamical Yang–Baxter
equation.

2 The SPCM and its Poisson bracket algebra

Following [1, 2], we define the supersymmetric principal
chiral model as follows. Let us consider a superfieldG(x, θ)
with values in a Lie group G. This superfield G(x, θ)
is a function of the space coordinates x± and the anti-
commuting coordinates θ±.1 The superspace Lagrangian

1 The orthonormal coordinates x0 = t and x1 = x in two di-
mensions are related to the light-cone coordinates and deriva-
tives by x± = 12 (t±x) and ∂± = ∂t±∂x.
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of the SPCM is then given as

L=
1

2
Tr
(
D+G

−1D−G
)
, (1)

where

D± =
∂

∂θ±
− iθ±∂± (2)

are the superspace covariant derivatives and

G(x, θ)G−1(x, θ) = 1 =G−1(x, θ)G(x, θ) . (3)

The superspace LagrangianL is invariant under the follow-
ing transformation:

GL×GR : G(x±, θ±) = UG(x±, θ±)V−1 , (4)

where U and V are GL and GR valued matrix superfields,
respectively. The Noether conserved superfield currents as-
sociated with the global transformation are

JL± = iD±GG
−1 , JR± =−iG

−1D±G , (5)

where the JR,L± are the Grassmann odd and are Lie algebra
valued, i.e., J± = J

a
±T

a, where {T a} is the set of genera-
tors of the Lie algebra g of the Lie group G.2 The superfield
equation of motion of the SPCM is the superfield conserva-
tion equation

D+J
R,L
− −D−J

R,L
+ = 0 , (6)

and the superfield zero-curvature condition is identically
satisfied by J± as

D−J
R,L
+ +D+J

R,L
− + i

{
JR,L+ , JR,L−

}
= 0 . (7)

We can expand the superfield G(x±, θ±) as

G(x, θ) = g(x)
(
1+ iθ+ψR+(x)+ iθ

−ψR−(x)+ iθ
+θ−FR(x)

)
.

(8)

An alternative component expansion is given by

G(x, θ) =
(
iθ+ψL+(x)+ iθ

−ψL−(x)+ iθ
+θ−FL(x)

)
g(x) ,
(9)

where ψ± are the Majorana spinors such that

ψR± = g
−1ψL±g , (10)

and F (x) is the auxiliary field, with an algebraic equation
of motion. The Majorana spinors ψ±(x) take values in the
Lie algebra g of G. The action of the symmetry GL×GR on

2 Our Lie algebra conventions are as follows. The anti-
Hermitian generators {T a, a = 1, 2, . . . , n = dim g} of the Lie
algebra g obey [T a, T b] = fabcT c and Tr(T aT b) = δab. For any
X ∈ g, X =XaT a.

component fields and the superfield currents JR,L± is

g �−→ UgV −1 ,

ψR± �−→ V ψ
R
±V

−1 ,

ψL± �−→ Uψ
L
±U

−1 ,

JR± �−→ V J
R
±V

−1 ,

JL± �−→ UJ
L
±U

−1 ,

where U and V are the leading bosonic components of the
matrix superfields U and V respectively, i.e., the fermions
transform under GR. From now on we consider the spinors
and current corresponding to GR, i.e., ψR± and J

R
± (which

we write as ψ± and J± in the following discussion).
After the elimination of the auxiliary field from the

expression of G(x, θ), the component Lagrangian finally
becomes3

L=
1

2
Tr

(
g−1∂+gg

−1∂−g

+ iψ+

(
∂−ψ++

1

2

[
g−1∂−g, ψ+

]
)

+
i

2
ψ−

(
∂+ψ−+

1

2

[
g−1∂+g, ψ−

]
)
+
1

2
ψ2+ψ

2
−

)
.

(11)

Using the Euler–Lagrange equations, we can directly
find the component equations of motion for the SPCM.
From (5) we write the component expansion of the super-
field current of the SPCM as

J± = ψ±+ θ
±j±−

i

2
θ∓{ψ+, ψ−}

− iθ+θ−
(
∂±ψ∓− [j±, ψ∓]−

i

2

[
ψ2±, ψ∓

])
,

(12)

where the components of the bosonic current are given by

j± =−
(
g−1∂±g+iψ

2
±

)
. (13)

Again j± represent the right bosonic current j
R
±. Substitut-

ing these into the superspace equations of motion, collect-
ing terms and writing h± = ψ

2
±⇔ h

a
± =

1
2f
abcψb±ψ

c
±, we

get the equations of motion for fermionic and bosonic fields
of the SPCM:

∂±ψ∓−
1

2
[j±, ψ∓]−

i

4
[h±, ψ∓] = 0 , (14)

∂−j++∂+j− = 0 , (15)

3 The two-dimensional Minkowski matrix is ηµν =
(
1 0
0 −1

)

and the γ matrices γ0 =
(
0 i
−i 0

)
, γ1 =

(
0 i
i 0

)
satisfy {γµ, γν}=

2ηµν . The Dirac spinor is ψ =
(ψ+
ψ−

)
, where ψ± are chiral

spinors and our assumption is that ψ± are real (Majorana).
The Lorentz behavior of x±, ∂± and ψ± is x

± �→ e∓Λx±,
∂± �→ e

∓Λ∂± and ψ± �→ e
∓ 12Λψ±, where Λ is the rapidity of the

Lorentz boost. The rule of raising and lowering spinor indices is
ψ± =±ψ∓.
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along with

∂∓j± =−
1

2
[j±, j∓]+

i

4
[j∓, h±]−

i

4
[j±, h∓]+

1

4
[h±, h∓] .

(16)

We use the fermion equations of motion to get the following
equations:

∂−j+−∂+j−+[j+, j−] = i∂−h+− i∂+h− , (17)

∂∓(ih±) =−
1

2

[
ih±, j∓+

i

2
h∓

]
, (18)

and

∂−h++∂+h− = 0 . (19)

Equations (15) and (19) show the conservation of the
bosonic currents j± and h±, respectively.
The Poisson brackets for the bosonic currents have al-

ready been derived in [2] and are given here:

{
ja0 (x), j

b
0(y)
}
= fabcjc0(x)δ(x−y) ,{

ja0 (x), j
b
1(y)
}
= fabcjc1(x)δ(x−y)+ δ

abδ′(x−y) ,
{
ja1 (x), j

b
1(y)
}
=
−i

4
fabc
(
hc+(x)+h

c
−(x)

)
δ(x−y) .

(20)

In light-cone coordinates, the brackets are expressed by

{
ja±(x), j

b
±(y)
}
=
1

2
fabc
(
3jc±(x)− j

c
∓(x)−

1

2
ihc+(x)

−
1

2
ihc−(x)

)
δ(x−y)

+2δabδ′(x−y) , (21)

{
ja+(x), j

b
−(y)
}
=
1

2
fabc
(
jc+(x)− j

c
−(x)+

1

2
ihc+(x)

+
1

2
ihc−(x)

)
δ(x−y) . (22)

The fermions obey

{
ψa±(x), ψ

b
±(y)
}
=−iδabδ(x−y) , (23)

{
ψa+(x), ψ

b
−(y)
}
= 0 . (24)

It is also useful to note that

{
ha±(x), ψ

b
±(y)
}
= ifabcψc±(x)δ(x−y) , (25)

{
ha±(x), h

b
±(y)
}
= ifabchc±(x)δ(x−y) . (26)

We recall the definition of the standard Poisson structure
associated with an arbitrary connected Lie group G and
consider a non-degenerate matrix d with entries [15, 16]

dab = 〈T a, T b〉 , (27)

where 〈, 〉 represents the Killing form and for
a semi-simple Lie algebra we have 〈T a, T b〉 = δab. Since
Tr(T aT b) = δab, if g is semi-simple and represented as

a matrix algebra, we may assume dab =Tr(T aT b). Let dab
denote the entries of the inverse matrix d−1, let an element
c of g⊗g and elements Aa of g be defined by

c= dabT
a⊗T b , (28)

Aa = dabT
b . (29)

Then we have the relations

[c, Ac⊗ I] =−[c, I⊗Ac] = f
abcAa⊗Ab , (30)

where the symbols A⊗ I and I⊗A denote the natural em-
bedding of A into g⊗g.
Using the usual tensor product notation, the Poisson

brackets can be expressed in the following way:

{j0(x) ⊗, j0(y)}= [c, j0(x)⊗1]δ(x−y) , (31)

{j0(x) ⊗, j1(y)}= [c, j1(x)⊗1]δ(x−y)+ cδ
′(x−y) ,

(32)

{j1(x) ⊗, j1(y)}=−
i

4
[c, (h+(x)+h−(x))⊗1]δ(x−y) ,

(33)

{j1(x) ⊗, h±(y)}=±
1

2
[c, h±(x)⊗1]δ(x−y) , (34)

{j0(x) ⊗, h±(y)}= [c, h±(x)⊗1]δ(x−y) , (35)

{h±(x) ⊗, h±(y)}= i[c, h±(x)⊗1]δ(x−y) , (36)

{h±(x) ⊗, h∓(y)}= 0 . (37)

In light-cone coordinates the above brackets can be ex-
pressed as

{j±(x) ⊗, j±(y)}=
1

2
[c, (3j±(x)− j∓(x)

−
1

2
ih+(x)−

1

2
ih−(x)

)
⊗1

]
δ(x−y)

+2cδ′(x−y) , (38)

{j+(x) ⊗, j−(y)}=
1

2
[c, (j+(x)− j−(x)

+
1

2
ih+(x)+

1

2
ih−(x)

)
⊗1

]
δ(x−y) ,

(39)

{j+(x) ⊗, h±(y)}=
3

2
[c, h±(x)⊗1]δ(x−y) , (40)

{j−(x) ⊗, h±(y)}=
1

2
[c, h±(x)⊗1]δ(x−y) . (41)

The SPCM is superconformally invariant classically, with
the super energy-momentum tensor obeying

D−Tr(J+J++) = 0 , (42)

D+Tr(J−J−−) = 0 , (43)

where J±± is defined as

J±± =D±J±+ iJ
2
± . (44)

The component content of the superspace conservation
equations (42) and (43) correspond to conservation of the
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supersymmetry current and the energy-momentum tensor
T±±. The conservation equations for T±± are

∂+T−− = 0 ,

∂−T++ = 0 ,

where the components T±± are given by

T±± =Tr
(
iψ±∂±ψ±+ j

2
±+ ij±ψ

2
±

)
. (45)

The Poisson brackets of the energy-momentum tensor
components T±± are given as

{T±±(x), T±±(y)}=−8T±±δ
′(x−y)−4T ′′±±δ(x−y) ,

(46)

{T++(x), T−−(y)}= 0 . (47)

3 Lax pair and the extended Yang–Baxter
relations

The field equations (14) and (15) of the SPCM La-
grangian (11) are also obtained as the compatibility condi-
tion of the following set of linear equations (Lax pair) [1]

∂+V (x
+, x−;λ) =A

(λ)
+ V (x

+, x−;λ) ,

∂−V (x
+, x−;λ) =A

(λ)
− V (x

+, x−;λ) , (48)

where A
(λ)
± =A±(x

+, x−;λ) is defined by

A
(λ)

± =

{
∓

(
λ

1∓λ

)
j±+ i

(
λ

1∓λ

)2
h±

}
. (49)

The compatibility condition of the linear system (48) is the
zero-curvature condition for the λ-dependent connection
components A

(λ)
±

[
∂+−A

(λ)
+ , ∂−−A

(λ)
−

]
≡ ∂−A

(λ)
+ −∂+A

(λ)
− +

[
A
(λ)
+ , A

(λ)
−

]

= 0 . (50)

Inserting from (49) in (50) gives

0 =−

(
λ

1−λ

)
∂−j+−

(
λ

1+λ

)
∂+j−+

1

2

(
λ

1−λ
−
λ

1+λ

)

×

(
[j+, j−]−

i

2
[j−, h+]+

i

2
[j+, h−]−

1

2
[h+, h−]

)

+

(
λ

1−λ

)2(
i∂−h++

1

2

[
ih+, j−+

i

2
h−

])

−

(
λ

1+λ

)2(
i∂+h−+

1

2

[
ih−, j++

i

2
h+

])
. (51)

Since (51) holds for all values of λ away from ±1, the coef-
ficients of

(
λ
1−λ

)
,
(
λ
1+λ

)
,
(
λ
1−λ

)2
and
(
λ
1+λ

)2
must be sep-

arately zero. This gives (16) and (18), which are equivalent

to (14) and (15). The general solution of the Lax pair (48)
is

V (x+, x−;λ) = eP (x
+,x−;λ)V0(λ) , (52)

where

P (x+, x−;λ)

=
−λ

1−λ

∫ x+

x+0

j+dy
++ i

(
λ

1−λ

)2 ∫ x+

x+0

h+dy
+

+
λ

1+λ

∫ x−

x−0

j−dy
−+ i

(
λ

1+λ

)2 ∫ x−

x−0

h−dy
− .

In the above expression V0 is the initial condition and is
a free element of the Lie group G. In terms of space-time
coordinates, the associated linear system can be expressed
as

∂0V (t, x;λ) =A
(λ)
0 V (t, x;λ) ,

∂1V (t, x;λ) =A
(λ)
1 V (t, x;λ) , (53)

with

A
(λ)
0 =

−λ

1−λ2

×

{
j1+λj0−

i

2
λ

(
1+λ

1−λ

)
h+−

i

2
λ

(
1−λ

1+λ

)
h−

}
,

(54)

A
(λ)
1 =

λ

1−λ2

×

{
j0+λj1−

i

2
λ

(
1+λ

1−λ

)
h++

i

2
λ

(
1−λ

1+λ

)
h−

}
.

(55)

Using (31)–(37) to find the Poisson bracket of the A1 (the
spatial part of the Lax pair) from (55), we get

{A1(x, λ) ⊗, A1(y, λ)}

=

{
−λµ

(1−λ2)(λ−µ)
[c, A1(x, λ)⊗1]

+
−λµ

(1−µ2)(λ−µ)
[c,1⊗A1(x, µ)]

}
δ(x−y)

+
λµ(λ+µ)

(1−λ2)(1−µ2)
cδ′(x−y) . (56)

The terms containing the brackets of h± cancel and we
are left with the terms that can be written in terms of the
Lax matrix A1(x, λ). In terms of r and s matrices we can
rewrite the Poisson bracket as

{A1(x) ⊗, A1(y)}= {[(r− s)λ,µ, A1(x, λ)⊗1]

+ [(r+ s)λ,µ,1⊗A1(x, µ)]}δ(x−y)

−2s(λ, µ)δ′(x−y) . (57)

This result is very important; it on comparison with the
bosonic PCM [21] shows that the Poisson bracket is of the
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same form as that of the bosonic principal chiral model
with no independent contribution coming from the terms
containing the fields h±(x), and it reduces to the Poisson
bracket of bosonic model found in [21], when fermions are
set equal to zero. Since the Poisson bracket is the same for
both the bosonic PCM and SPCM, the algebra of mon-
odromy matrices obtained for the bosonic PCM [12] can be
extended to the case of SPCM (see Sect. 4). The matrices r
and s are given by

r(λ, µ) =
−λµ

2(λ−µ)

{
1

1−µ2
+

1

1−λ2

}
c , (58)

s(λ, µ) =
−λµ(λ+µ)

2(1−µ2)(1−λ2)
c . (59)

Equations (58) and (59) show that the r and s matrices
obtained for the SPCM are the same as for the bosonic
PCM. The anti-symmetry of the canonical brackets (57)
holds through the relations

Pr(λ, µ)P =−r(µ, λ) , Ps(λ, µ)P = s(µ, λ) , (60)

where Pac,bd = δadδcb is satisfied for any matrices A,B;
P (A⊗B)P = B⊗A. It must be emphasized that the al-
gebra (57) is a non-trivial generalization of the canonical
structure of the ultralocal type models that are obtained
in the limit s= 0 and ∂xr(x, λ, µ) = 0. Our algebra (57) is
a linear algebra written in terms of two matrix structure
constants (r and s) with central extension (δ′ term) gov-
erned by the s matrix. It is important to point out here
that in general the non-ultralocal integrablemodels exhibit
a space-time dependence for the r and s matrices [18–21]
and there could be higher derivatives of the delta function
in the Poisson current algebra. In our case, the supersym-
metric model is of non-ultralocal type, containing the first
derivative of the delta function in its Poisson current alge-
bra. However, the r and s matrices do not contain a space-
time dependence and therefore are non-dynamical. Such a
kind of non-dynamical r–smatrices also appear in the case
of an SU(2) WZW model as a non-ultralocal model [12].
The algebra can be expressed in a more transparent way by
introducing the Lax operatorD(x, λ), defined by

D1(x, λ) = ∂1+A1(x, λ) , (61)

so that the Poisson bracket algebra can be equivalently ex-
pressed in terms of the differential operatorD(x, λ) as

{D1(x, λ) ⊗, D1(y, µ)}

=−[r(x, λ, µ)δ(x−y),D1(x, λ)⊗1+1⊗D1(y, µ)]

+ [s(x, λ, µ)δ(x−y),D1(x, λ)⊗1−1⊗D1(y, µ)] .
(62)

Requiring now the Jacobi identity of the canonical
bracket (57) to be satisfied, we get the following, extended
Yang–Baxter equation for the numerical r and s matri-
ces [17]:

[(r+ s)13(λ, η), (r− s)12(λ, µ)]

+ [(r+ s)23(µ, η), (r+ s)12(λ, µ)]

+ [(r+ s)23(µ, η), (r+ s)13(λ, η)] = 0 . (63)

Here the indices 1, 2, 3 label the three spaces involved
in computing the algebra of the three A1 matrices and
we have for example (r+ s)12(λ, µ) = (r+ s)(λ, µ)⊗13.
Again, (63) is a generalization of the usual classical
Yang–Baxter equation for r matrices in ultralocal type
models as obtained (in (63) as in (57)) for s = 0. How-
ever, we have to note that in going from ultralocal type
models to non-ultralocal ones, it is not sufficient to sim-
ply add a central extension (δ′ term) to the ultralocal
algebra of the A1 matrices. In fact, it is necessary, as
can be seen from (57), to modify also the δ(x− y) part
with s terms related to the extension (δ′ term) in order
to satisfy the Jacobi identity (63). Moreover, in gen-
eral (63) holds with an r matrix, which itself does not
satisfy the usual classical Yang–Baxter equation for r
matrices of ultralocal models, hence showing the cru-
cial role played by the new s matrix. It is then possible,
using (57) and (63), to derive the canonical algebra of two
monodromy matrices in a completely consistent manner,
i.e., in agreement with the Jacobi identity, since (63) is
verified.

4 Algebra of monodromy matrices

Themonodromymatrix T (x, y, λ) is defined in terms of the
Lax matrix A1(x, λ) as

T (x, y, λ) = P exp

∫ x

y

A1(x
′, λ)dx′ . (64)

The infinite volume limit of T (x, y, λ), i.e.,

T (∞,−∞, λ)≡ T (λ) = P exp

∫ ∞

−∞
A1(x, λ)dx , (65)

is a conserved quantity for any value of the spectral param-
eter λ [20]. By expanding T (λ) in powers of λ, an infinite
set of non-local conserved quantities is obtained with the
first two quantities given by [1–7]

Q(1)a =−

∫ ∞

−∞
dyja0 (t, y) , (66)

Q(0)a =

∫ ∞

−∞
dy

[
−ja1 (t, y)+

i

2

(
ha+(t, y)−h

a
−(t, y)

)

+
1

2
fabcjb0(t, y)

∫ y

−∞
dzjc0(t, z)

]
.

(67)

The non-local conserved quantities generate a Yangian de-
formation symmetry [6].
The monodromy matrix usually contains the main in-

formation of the canonical structure of the non-ultralocal
sigma models. In particular, its infinite volume limit
(through proper regularization) provides us when ex-
panded in a power series in λ, with an infinite set of
conserved quantities, an infinite subset of them being in in-
volution i.e., Poisson commute, as a signature of complete
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integrability of the model. Since the Poisson bracket alge-
bra of the A1 matrices of the SPCM is similar to that of
the bosonic model, the Poisson bracket for the monodromy
matrices of the SPCM can be determined using the equal-
point limits through a regularization procedure developed
for the bosonic models in [11–23]. The Poisson bracket of
the monodromy matrices of the SPCM turns out to be of
the same form as the Poisson bracket of the bosonic models
and is given by

{T (x, y, λ) ⊗, T (x, y, µ)}= [r(λ, µ), T (x, y, λ)T (x, y, µ)] .
(68)

In the infinite volume limit (68) reads

{T (λ) ⊗, T (µ)}= [r(λ, µ), T (λ)T (µ)] , (69)

and the conserved quantities, TrT (λ), are in involution,
being

Tr(A⊗B) = TrA ·TrB , (70)

so that

{TrT (λ),TrT (µ)}=Tr{T (λ)⊗T (µ)}= 0 . (71)

In summary, we have calculated the Poisson bracket alge-
bra of the A1 matrices of the Lax pair of the SPCM as
a non-ultralocal integrable model. From the A1 matrices of
the SPCM, we have determined the Poisson bracket alge-
bra of the monodromy matrices; and using the equal-point
limit, we have shown the existence of conserved quantities
of the model that are in involution with each other estab-
lishing the classical integrability of the SPCM as a non-
ultralocal model. It seems appropriate here to make a few
comments on the existence of an infinite number of con-
served quantities of the SPCM. It has been shown in [1,
2] that there exist an infinite number of non-local and
local conserved quantities of the SPCM. The non-local con-
served quantities can be generated from the monodromy
matrix, as has been discussed in this section, and they gen-
erate a Yangian symmetry. The local conserved quantities
of the SPCM have been investigated in [2], and it has been
shown that there are two families of conserved quantities in
involution, each with finitely many members whose spins
are the exponents of the underlying Lie algebra. Similarly,
in [1] an infinite number of local conservation laws has
been constructed through a pair of matrix Riccati equa-
tions of the SPCM. The appearance of these conserved
quantities has important consequences regarding the inte-
grability of the SPCM, and they are constructed through
a Lax pair and the zero-curvature condition of the model.
No explicit form of the conserved quantities has been ob-
tained; neither those of the trace of the monodromy ma-
trix nor those obtained through a set of matrix Riccati
equations. Once the explicit form of the conserved quan-
tities is known, one would be able to establish a rela-
tion among these quantities generated through different
approaches.

5 Conclusions

We have developed an r–s matrix formalism of the su-
persymmetric principal chiral model as a non-ultralocal
integrable model. By evaluating the fundamental Poisson
bracket of the A1 matrices of the Lax pair of the SPCM,
we have shown that this bracket has the same form as
the fundamental Poisson bracket of the bosonic principal
chiral model. The fundamental Poisson bracket is then
used to define the monodromy matrix of the model, which
gives the conserved quantities in involution. The algebraic
structures studied here can also be investigated for the
supersymmetric nonlinear sigma models on Riemannian
symmetric spaces, the most general class of supersym-
metric nonlinear sigma models that are integrable (see
e.g. [8, 9]). The other direction in which the work can be
further extended entails the recent investigations into the
classical integrability in superstring theory on AdS5×S5

(see e.g. [24–28]). In these studies, the theory has been
regarded as a nonlinear sigma model with the field tak-
ing values in the supercoset space PSU(2,2/4)

SO(4,1)×SO(5) , which has

an even part, the AdS5×S5 geometry. The even part ad-
mits a Lax formalism and is further linked to conserved
quantities of the Yang–Mills sector of the AdS/CFT cor-
respondence (see e.g. [24–28]). The algebra of monodromy
matrices for the AdS5×S5 superstrings has been investi-
gated in [24–28]. In the light of our result, one can ex-
pect that the Poisson bracket algebra can be developed
for the superstring theory on AdS5×S5 as a non-ultralocal
theory that gives conserved quantities in involution, and
it fits in the r–s matrix formalism of integrable models.
Another important direction that can be pursued for fu-
ture research is to develop an r–s matrix formalism for
the sigma models with target space supersymmetry. The
most important aspect of such investigations is, however,
to promote the classical integrability of such a model to the
quantum level.
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